
Explaining the performance of different reward strategies for chef’s
Hat players based on loss value and Q-value

Gabriel Silva1 and Pablo Barros2

Abstract— XAI method for agent behavior analysis using
q-value and loss evaluated on DQL agent in chef’s hat.
the development processes of agent using deep reinforcement
learning (DRL) methods with deep Q-learning (DQL) to solve
the complexity problems of Q-learning, using the OpenAI Gym
environment of Chef’s Hat, a card game developed to analyze
human behavior with multimodal and competitive interactions
in mind, allowing it to be easily followed and modeled by
artificial agents. The proposal is to evaluate the performance
and explain based on the loss value and the q-value of the agent
with different reward strategies: (I) based on moves that focus
on playing cards with high values, and (II) based on moves that
focus on a higher number of discards.

I. INTRODUCTION

Reinforcement learning (RL) is a machine learning (ML)
technique that trains software to make decisions in search of
the best results. It mimics the trial-and-error learning process
that humans use to achieve their goals [8]. The results of
each attempt, regardless of its success, are used to train the
agent through a reward/punishment system and determine
whether the actions taken are valid or not. The agent learns
from its mistakes and successes and, in the end, is expected
to perform the task masterfully. However, to get around
the complexity of Q-Learning, we can use Reinforcement
Learning combined with Artificial Neural Networks (ANN),
thus having Deep Reinforcement Learning (DRL) [3 , 10].

In this paper we implement the deep reinforcement learn-
ing (DRL) method to develop an agent. We use two different
reward strategies, one focusing on the value of the discarded
card, and the other focusing on the amount of discarded
cards. The competitive game environment of Chef’s Hat
allowed the performance between the agent and three random
agents to be evaluated. The results obtained show how
different strategies present performances that, even though
different, managed to train the agent in the rules of a
competitive game such as Chef’s Hat. The objective of this
article is to evaluate and explain the agent’s performance
throughout the training and in the validation testing stage of
the trained model, using the loss value and the q value as a
basis.

This paper is organized as follows. Section II presents the
environment in which the model was trained and evaluated.
Section III presents the learning method used to teach the
model to play. Section IV presents the methods used in

1Gabriel Lima G. da Silva is with Postgraduate Program in Com-
puter Engineering (PPGEC), University of Pernambuco, Recife, Brazil
glgs@ecomp.poli.br

2Pablo Vinicius A. Barros Sony, Belgium
pablo.barros@sony.com

the methodology for developing the agent in reinforcement
learning. Section V presents the evaluation of the results
acquired during training and testing. Finally, section VI
presents the final considerations.

II. CHEF’S HAT ENVIRONMENT

As described in Barros et al [1 , 2] the environment imple-
ments specific action and observation spaces, and calculates
scores and performances after the game ends. The game has
a role-based hierarchy in a kitchen context: each player can
be a chef, a sous-chef, a waiter or a dishwasher. Players are
given 17 cards, and each player tries to be the first to get rid
of his ingredient, trying to make the pizza first before the
others, which will promote him to the position of Chef, this
happens over several rounds (or turns). The playing flow of
the game can be seen in figure 1.

Fig. 1. The flow of the Chef’s Hat card game.



III. DEEP REINFORCEMENT LEARNING

Reinforcement learning uses interactions with the envi-
ronment in which it is inserted to learn based on rewards
as a guide in this learning process for each well-executed
action. This process is done entirely without any human
intervention during the agent’s learning process, as presented
in Qiang [4], and Sutton [8]. Reinforcement learning
algorithms tend to solve problems where the necessary
actions are not explicitly programmed. Using the state spaces
and actions that the agent can perform in the environment,
thus generating the reward for trial and error, as applied
by Barros et al [2] during the training of agents based
on reinforcement learning. Deep Reinforcement Learning
(DRL) is an algorithm in the field of reinforcement learning,
it combines the principles of artificial neural networks (ANN)
and reinforcement learning (RL) achieving great success in
various types of complex tasks, making agents learn optimal
policies in complex environments as described by Li, S [3]
and Fan, J [10].

Using the Q-Learning algorithm to compute the optimal
action value function (Q-function) that identifies the states
for expected future rewards [9]. This is done by replaying
experiences acquired during agent training, helping to mem-
orize related sequential experiences and storing them in a
replay memory buffer. This memory buffer is randomly sam-
pled during network updates to break temporal dependencies
and stabilize learning [5].

IV. METHODOLOGY

The reinforcement learning method was used to train an
agent in conjunction with artificial neural networks (ANN).
Chef’s Hat environment in which the agent was inserted has
great complexity due to the number of states and actions
that the agent will perform during the learning process. The
method used was an algorithm that uses neural networks with
Q-learning, allowing the agent to learn in complex environ-
ments, creating a deep Q-network (DQN). The parameters
used to create the neural network responsible for training
the agent using deep learning methods are presented in the
table I below.

TABLE I
LAYERS OF NEURAL NETWORK

Layers Neurons Activation Function
Input layer 28
Input layer 200
Dense layer 256 ReLU
Dense layer 256 ReLU
Output layer 200 Softmax

The experiment puts the learning agent to play against
three random models; A training routine lasting 1000 games
was run, using reward strategies with different focuses:

• Discards with higher value cards.
• Discard the largest number of cards.
The reward focusing on the highest value card, can be seen

in the formula (1). In equation, the value of the reward will

be proportional to the value of the card played raised to the
negative value of the number of cards discarded.

reward = cardValue−qtdDiscarded (1)

As for the reward based on the number of cards discarded,
it can be seen in the formula (2).In the equation, the reward
value is proportional to the amount of discarded cards. Where
the value of the card is multiplied by weight with value (-
0.11), and the result of the multiplication is added to the
amount of discarded cards in that action.

reward = [cardValue∗ (−0.11)]+qtdDiscarded (2)

V. RESULTS

Analyzing the strategies used by the model during training,
we have as a sample the graph that shows the agent’s loss
as the epsilon value decays, as shown in the figure 2.

Fig. 2. Decay of loss and epsilon value over training with 1000 games

During the training that was carried out with 1000 games,
to know how the agent is learning during training we observe
the loss value shown in the figure 2, where:

• Red line: Represents the card discard strategy (number
of cards discarded).

• Blue line: Represents the card value strategy (value of
cards discarded).

For the strategy that rewards actions that prioritize plays
with card value (blue line), the loss decreases more steadily,
suggesting that the model is finding a more robust decision
policy. Prioritizing card value leads to more strategic deci-
sions, such as discarding high-value cards to force opponents
to pass. In parallel, for the strategy that rewards actions
that prioritize plays with the number of cards discarded (red
line), the loss shows greater fluctuation, indicating that the
model, as it trains finding a consistent policy, moves away
from what could be the optimal play. This may be because
prioritizing the number of cards discarded can lead to less
strategic decisions, such as discarding many low-value cards
without pressuring opponents.

With the trained models, testing experiments were per-
formed to validate the model strategies, and evaluate the Q-
values for both strategies. These experiments were performed



by having the agent play against 3 random agents, where
a test was performed for each agent, running an hundred
games.

Fig. 3. Q-value values: Plot (I) reward focused on the value of the discarded
card, Plot (II) reward focused on the number of discarded cards

Each line in the graph represents the q-value values during
a game, and the number of rounds the agent played can be
seen on the x-axis. The agent trained with the reward focused
on the value of the discarded card starts the games with low
q-value values, as shown in graph I in figure 3, and as the
game progresses, its values increase. Graph II in image 3,
shows the performance of the agent trained with the reward
focused on the number of discarded cards, where the agent
tends to start the rounds with high values, and as the game
progresses, its values tend to decrease. It can also be seen
that the number of rounds on the x-axis in graph II is greater
than in graph I. It is possible that the agent trained with the
strategy based on the number of discarded cards plays more
rounds to win the game.

A test evaluation routine where the trained agent plays
10x100 games against random agents, without additional
training, measuring the average of the total victories achieved
by the model in each game. This experiment aims to provide
us with important information about how the model trained
using different reward strategies learns to outperform a
simple strategy based on random choices. Based on the
information obtained through the average number of wins
and their standard deviation during tests for both models, it
is shown that the strategy of prioritizing plays using cards of
higher value and the strategy of discarding the largest number
of cards present a learning of their action policies where they
manage to win a significant amount against random agents
as described in the table II.

To validate the performance of the two strategies, a test
was performed with 100 games to compare the number of
wins. In this test, an agent trained with the reward focused
on discarding the highest value cards, an agent trained with

TABLE II
RESULTS OF THE EXPERIMENT : REWARD I - VALUE OF THE DISCARDED

CARD, REWARD II - NUMBER OF CARDS DISCARDED.

Model Victories Random1 Random2 Random3
reward I 55.555.555.5±4 14.7±3.56 14.2±2.8 15.6±2
reward II 45.445.445.4±3.2 17.4±3.28 16.9±3.48 20.3±3.62

the reward focused on the number of discarded cards, and
two random agents were used.

TABLE III
RESULTS OF THE EXPERIMENT : NUMBER OF WINS OVER 100 GAMES

Model Victories
Player - reward value card 55

Player - reward discarded quantity 30
Random I 9
Random II 6

Based on the information obtained through the number of
victories during the games, it is shown that the strategy of
prioritizing plays using higher value cards proved to be more
effective than the strategy of discarding the largest amount,
indicating that the results are more consistent as shown in
the image III.

VI. CONCLUSION

In this paper, an agent was developed using the deep
reinforcement learning method with two different strategies
for its reward, namely: reward based on the value of the
discarded card and reward based on the number of discarded
cards, both for the same scenario of the competitive game
Chef’s Hat, and using the loss and Q-values to explain the
agent’s performance.

Evaluating the loss value during the training stage, it is
shown that the loss value for reward based on the value of the
card has a more stable progression, decreasing throughout the
training, while the loss value for reward based on the number
of discards has a more unstable progression, demonstrating
that the agent was learning more slowly. In the Q value
during the validation testing stage, it was shown that both
strategies performed well against random agents. However,
the agent trained with the discarded card value strategy had
an average win rate of over 50%, and the agent trained with
the discarded card number strategy had an average win rate
of over 40%.

While a game run to compare the two strategies showed
that rewarding based on the value of the discarded card
was more effective and stable than rewarding based on
the number of discarded cards, as the agent trained using
rewarding based on the value of the card won 55 games out
of 100, while the agent trained using rewarding based on the
number of discarded cards won 30 games out of 100.

As future work, use explainable AI methods, such as an
introspection-based approach, to have a better explanation of
the agent’s Q-value data during its plays, such as “why was
this action selected instead of another?”.



REFERENCES

[1] Barros, P., Tanevska, A., Cruz, F. & Sciutti, A. Moody
learners-explaining competitive behaviour of reinforce-
ment learning agents. 2020 Joint IEEE 10th Interna-
tional Conference On Development And Learning And
Epigenetic Robotics (ICDL-EpiRob). pp. 1-8 (2020)

[2] Barros, P., Tanevska, A. & Sciutti, A. Learning from
learners: Adapting reinforcement learning agents to be
competitive in a card game. 2020 25th International
Conference On Pattern Recognition (ICPR). pp. 2716-
2723 (2021)

[3] Li, S. Deep reinforcement learning. Reinforcement
Learning For Sequential Decision And Optimal Con-
trol. pp. 365-402 (2023)

[4] Qiang, W. & Zhongli, Z. Reinforcement learning
model, algorithms and its application. 2011 Interna-
tional Conference On Mechatronic Science, Electric
Engineering And Computer (MEC). pp. 1143-1146
(2011)

[5] Arulkumaran, K., Deisenroth, M., Brundage, M. &
Bharath, A. Deep reinforcement learning: A brief sur-
vey. IEEE Signal Processing Magazine. 34, 26-38
(2017)

[6] Barros, P., Sciutti, A., Bloem, A., Hootsmans, I.,
Opheij, L., Toebosch, R. & Barakova, E. It’s food fight!
Designing the chef’s hat card game for affective-aware
HRI. Companion Of The 2021 ACM/IEEE International
Conference On Human-Robot Interaction. pp. 524-528
(2021)

[7] Barros, P., Bloem, A., Hootsmans, I., Opheij, L., Toe-
bosch, R., Barakova, E. & Sciutti, A. The Chef’s Hat
Simulation Environment for Reinforcement-Learning-
Based Agents. ArXiv Preprint ArXiv:2003.05861.
(2020)

[8] Sutton, R. Reinforcement learning: An introduction. A
Bradford Book. (2018)

[9] Watkins, C. & Dayan, P. Q-learning. Machine Learning.
8 pp. 279-292 (1992)

[10] Fan, J., Wang, Z., Xie, Y. & Yang, Z. A theoretical
analysis of deep Q-learning. Learning For Dynamics
And Control. pp. 486-489 (2020)


